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Good Explanation for Algorithmic Transparency

ABSTRACT

Machine learning (ML) algorithms have gained widespread usage across a variety of domains,

both in providing predictions to expert users and recommending decisions to everyday users. End-

users are rarely provided with an explanation of the algorithmic output, and the critical need for

explanation in artificial intelligence (AI) has led to calls for algorithmic transparency, including

the “right to explanation” in the EU General Data Protection Regulation (GDPR), which requires

many companies to provide a meaningful explanation to involved parties. However, the research on

what constitutes a meaningful or good explanation from an end-user’s perspective has been limited.

In this paper, we (1) develop a generalizable framework grounded in philosophy, psychology, and

interpretable machine learning to investigate and define the characteristics of a good explanation

for ML decisions, and (2) conduct large-scale studies to measure the impact of different factors

on perceptions of understanding, fairness, and trust in the context of credit loan and credit card

application decisions. The framework and studies together form a concrete guide for managers to

present algorithmic prediction rationales to end-users to foster trust and adoption.

Keywords: artificial intelligence, financial decision making, consumer knowledge
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INTRODUCTION

Machine learning (ML) algorithms and other forms of artificial intelligence (AI) systems are

rapidly gaining important roles in everyday decisions for both consumers and managers. For ex-

ample, AI-powered systems give product recommendations on e-commerce websites, while banks

are increasingly using ML to make large-scale decisions, including credit scoring, fraud detection,

and loan approvals.

The most successful algorithms in use today are extremely complex. Different varieties of deep

neural network models (e.g., CNN, LSTM, etc.) have been shown to excel across a variety of do-

mains, including finance, medicine, and law (LeCun, Bengio, and Hinton 2015). Ensemble models

such as boosted trees (Chen and Guestrin 2016) often dominate data science competitions. These

models are fundamentally “black boxes” with many hidden layers of nonlinear transformations. It

can be quite difficult for anyone – including developers and end-users – to understand the underlying

reasons for an algorithm’s output.

There are many reported cases where black box algorithms have caused harm at scale, and

where we have limited ability to determine why certain predictions were made and/or how to fix

the underlying algorithm. Most famously, Angwin et al. (2016) reported that an algorithm used

to guide parole and bail decisions was systematically biased against black defendants. Zech et al.

(2018) warned that a black box neural network that uses x-rays to diagnose disease could be misled

by spurious noise without end-users knowing why. The ability to discover, audit, and address these

issues requires explanation, as well as human understanding, of the inner workings of the algorithm.

Many industry experts have pointed out the critical need for human-oriented explanation. Ac-

cording to an IBM survey, about 60% of 5,000 executives were concerned about explainability of

AI decisions (Brenna et al. 2018) while another study of 3,000 executives identified “developing in-

tuitive understanding of AI” to be the most important challenge (Ransbotham et al. 2017). Similar

concerns are shared by researchers and policymakers. Hosanagar (2020) proposes the Algorithmic

Bill of Rights to protect consumers from harmful and unintended consequences of AI, emphasizing

the importance of algorithmic transparency. The EU General Data Protection Regulation (GDPR)
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requires many companies to provide an ex post meaningful explanation to involved parties (e.g.,

users, customers, or employees), while the Equal Credit Opportunity Act demands that finance

companies provide reasons for decisions to their customers.

Clearly, efforts to develop more interpretable, explainable, or intelligible algorithms comprise a

key area of current research.1 A growing number of researchers have been developing eXplainable

AI or “XAI” (see Guidotti et al. 2018 for a survey). However, the definition of interpretability

and desiderata for a good explanation remain elusive (Lipton 2016; Rudin 2019), and so different

researchers use different, often problem- or domain-specific, definitions. More alarmingly, XAI

research rarely involves systematic investigation of human responses with regard to a “good” or

“satisfactory” explanation; researchers typically rely on their own intuitions even though they form

a highly biased sample. To the best of our knowledge, there have not been rigorous empirical

studies of how explanations for ML or AI systems do (or do not) advance consumers’ interests and

objectives.

The goal of this paper is to address the key question: “What is a good explanation for AI out-

put?” We approach this question in three stages. First, we establish a definition of good explanation

based on pragmatic theories of explanation in the philosophy of science, which argue that an expla-

nation should enable recipients to advance their goals or objectives. These goals may vary across

contexts, but are generally centered around increasing understanding, trust, and adoption among

users. Motivated by pragmatic theories of explanation, we develop a theoretical framework for

the potentially relevant features of an explanation, as well as situational and human factors, that

may impact the recipient’s perception of the explanation and ultimately the objectives. Second, to

demonstrate how this framework can be applied, we conduct several large-scale experiments using

both real-world and hypothetical financial data and decisions to investigate the impact of varying

different dimensions within our framework.

For managers, our framework can be used to uncover the best way to present algorithmic pre-
1There is no consensus on terminology, with different researchers using the terms “explainable”, “intelligible”, “in-

terpretable”, and “understandable” interchangeably and/or in different ways. The focus of this paper is not to reconcile
these definitions or create a new definition, but rather to understand what makes a given explanation (i.e., as provided
by the system or by the researcher) “good”.
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diction rationales to end-users to foster trust and adoption. For AI and XAI researchers, the frame-

work highlights important factors when devising algorithms and their explanations. For business

and social science researchers, our framework can motivate more in-depth investigation of different

dimensions that impact the “goodness” of explanations.

EXPLANATION IN PHILOSOPHY OF SCIENCE

Theories of explanation in philosophy (of science) generally divide into two groups based on

whether pragmatic factors are part of what makes something a good explanation. First, traditional

(non-pragmatic) theories argue that something is a good explanation only when it provides the

correct answer to a “why-question” (see Strevens 2008). For example, an explanation for why

someone buys product A instead of B might provide the causal sequence that starts with search

within the product category and culminates in the final purchase. Importantly, these theories all

contend that the quality of an explanation is determined by its correspondence to the aspect of the

world being explained. Thus, the intended audience of a particular explanation plays no role in

assessing its quality; if the audience cannot understand the explanation (e.g., a five-year-old given a

technically accurate explanation of quantum mechanics), then the failing is with the audience, not

the explanation.

In contrast, pragmatic theories of explanation (Achinstein 1983; Van Fraassen 1988) argue that

a good explanation must provide an answer to a why-question that also enables the recipient to

advance her goals or interests. If someone cannot understand a proposed explanation or if the

explanation fails to provide the information that they need for their present goals, then the fault

does not lie entirely with the recipient; rather, the explanation itself is judged to be poor (for that

audience). Of course, the same explanation might be considered good for one audience but not

for another. That is, pragmatic theories of explanation imply explanatory pluralism (Lipton 2008;

Mantzavinos 2016; McCauley 1996), or the idea that there can be multiple good explanations for

the very same event. Moreover, good explanations need not be consistent with one another.

As a concrete example, a good explanation of stock diversification for the layperson might re-

fer to an adage of “not putting all eggs in one basket” and spreading out risks, since this enables
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them to understand and predict what might happen if that basket is damaged. However, a good

explanation for a portfolio manager should contain statistical theories that enable them to deal with

complex market situations. The layperson’s explanation is ultimately inconsistent with the portfolio

manager’s explanation, though they give the same predictions or recommendations in many cases.

According to traditional non-pragmatic theories of explanation, the layperson’s “explanation” is not

actually an explanation at all since it does not truly correspond to features of the world (though it

approximates them); however, according to pragmatic theories, it is a good explanation that enables

the layperson to reach their personal finance goals.

As this example indicates, one surprising implication of pragmatic theories of explanation is

that, in extreme cases, even falsehoods can be explanatory if they lead to overall improved ability

to reach the recipient’s goals (Elgin 2007).2 This performance constraint is critical, as it addresses

the concern that pragmatic theories provide an “anything goes” approach (Van Bouwel and Weber

2008). Not all explanations are equally good, since not all explanations support people’s goals in

the same way. Moreover, one key goal for many audiences will be to “know relevant facts about the

world,” in which case explanations favored by non-pragmatic approaches will likely be evaluated as

good explanations by pragmatic theories as well. However, the objectively “truthful” explanation

is judged to be good in this case because it supports the recipient’s goals (to gain knowledge), not

because of some intrinsic value of truthfulness. This is particularly relevant to XAI, where there

may be a trade off between the accuracy and transparency of an algorithm, and where many methods

developed to explain black-box algorithms use approximation methods (see Arrieta et al. 2020 for

a review).

The present paper is focused on the ways in which XAI does (or does not) enable people to

advance their goals and interests. Hence, pragmatic approaches are significantly more appealing

than non-pragmatic ones. Use of a pragmatic account of explanation for XAI, however, requires

that we explicate not only the values and objectives that are relevant to assessing the quality of

an explanation, but also how to weigh those different values in specific cases. We contend that
2Of course, falsehoods could lead to incorrect conclusions, but if those only arise in cases that the recipient does

not encounter, then they are not immediately disqualifying (De Regt and Gijsbers 2016).
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these values should not be legislated by philosophers, psychologists, or technologists, but should

instead come from human users, including both laypeople and experts. That is, XAI should involve

a participatory and deliberative process that includes the stakeholders who are impacted by the AI

– developers, deployers, users, regulators, and more – to ensure that they can appropriately answer

their why-questions in accordance with their values and goals. Of course, this process does not

have to occur de novo for each new XAI deployment; lessons learned in one context can surely be

transferred to new cases. Our framework and illustrative example can be understood as a first step

towards identifying some of the relevant goals for a particular context and audience.

A GENERALIZABLE FRAMEWORK FOR THE DIMENSIONS OF EXPLANATION

This section develops our framework for good explanation in AI/ML settings by motivating and

defining user goals, followed by different modes of explanation and dimensions that may moderate

the efficacy of explanations (see Figure 1).

Figure 1: Framework for dimensions of explanation with examples of how the different dimensions
may be varied for a specific use case.

Our framework is motivated by psychological, ethical, and computer science perspectives, and

is by no means meant to be an exhaustive list of all possible factors that may impact how good

an explanation is. We intend the framework to be a roadmap to guide users of AI/ML in thinking

about how to prepare explanations for algorithmic predictions for human users. In line with this

approach, Miller (2019) argues that computer scientists should draw upon the existing literature in
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humanities and social sciences to properly understand multi-faceted aspects of good explanation

and psychological views of how humans perceive and accept explanations.

User Goals

In psychology, a growing body of research has focused on how why-questions can or should be

answered using different types of explanations. Lombrozo and Carey (2006) propose the idea of

“Explanation for Export”, which suggests that the function of explanations is to enable individuals

to succeed in future contexts (e.g., in terms of actions, predictions, etc.), just as argued by propo-

nents of pragmatic theories of explanation. Notably, Vasilyeva, Wilkenfeld, and Lombrozo (2017)

demonstrate that the perceived “goodness” of an explanation depends specifically on its relevance

to the evaluator’s current task. We contend that at least three types of cognitive functions or “user

goals” may be relevant to the evaluation of an explanation in business settings.

Epistemic user goals are those related to the recipient’s knowledge: if she cannot understand the

explanation or its implications, then the explanation cannot make a meaningful contribution to her

knowledge. Even the most scientifically rigorous explanation is undesirable if users have difficulty

understanding it or don’t find it intuitive (Immordino-Yang and Feath 2010). To measure epistemic

objectives, in some cases the recipient may only have a few moments to process the explanation, so a

subjective self-reported perception of understanding and/or intuitiveness is sufficient (Cramer et al.

2008). In other cases, it may be worthwhile to measure “true” understanding using questions that

test participants’ ability to replicate the algorithm’s predictions, consider counterfactual scenarios,

or design new actions (Lage et al. 2016, Poursabzi-Sangdeh et al. 2018).

In terms of ethical user goals, XAI is often necessary for a company to earn customers’ trust.

Data subjects can reasonably place trust in data processing firms only when they are assured of a

viable avenue for redress of grievances for harms or wrongs (Radin 2012). This type of “right of

redress” (or to a fair trial, fair compensation, exit, etc.) typically requires explanations, which then

also serve to restore trust in the company (Kim and Routledge 2020). More fundamentally, when

we consider the conditions for justifiable, appropriate trust (Hardin 2002), we immediately see the

key role that explanations can play in providing the necessary information to the potential trustor
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(Roff and Danks 2018). In contrast, simple remediation (e.g., financial compensation for harm)

does not necessarily require explanation, and is insufficient to repair trust unless accompanied by

explanation of future harm prevention. Although there are many cases where algorithms actually

reduce biases relative to human decision-making (Cowgill and Tucker 2019), it is also important to

understand whether end-users perceive the outcomes to be fair, which may be improved via the use

of appropriate explanations. Moreover, explanations can sometimes reveal other harms that have

occurred or identify conditions in which harms might occur in the future, and thereby point towards

ways to be more ethical.

Finally, consumer user goals include users’ willingness-to-adopt or use the algorithm as a deci-

sion aid, or accept and/or be satisfied with the output of an algorithm. With recommender systems

in particular, a firm may also want to maximize a behavioral outcome such as clickthrough rate

or conversion (Tintarev and Masthoff 2015). There has been widespread resistance to algorithm

adoption across a variety of domains such as forecasting and medical diagnoses (Dietvorst, Sim-

mons, and Massey 2014; Grove and Meehl 1996), which may be related to consumers’ perceived

control or agency (Shaffer et al. 2013). Thus, another important consumer objective may be to give

individuals a sense of control in terms of impacting the outcome generated by the system.

Explanations for AI systems can have diverse user goals beyond those we have discussed. These

user goals may be correlated or there may be multiple goals within a single use-case. In our stud-

ies, we measure a variety of user goals, including both subjective and objective understanding,

intuitiveness, fairness, satisfaction, ability to impact outcomes, and how ethical the use of algo-

rithms is perceived to be in a particular domain. Importantly, we find many of these measures to

be highly positively correlated, which means that providing good explanations may serve multiple

goals. For example, increasing user understanding (which is mainly important for the user) may

also serve to increase user trust (which is also important for the firm).

In the following subsections, we review three classes of relevant and empirically testable/measurable

dimensions that may exert a significant causal impact on an explanation’s ability to satisfy relevant

objectives or serve as moderators, as summarized in Figure 1.
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Explanation Mode

The most obvious determinant of the goodness of an explanation is the mode of the explanation

itself. Nudges and choice architecture have long been studied within decision making research (see

Johnson et al. 2012 for a review), with the underlying theory being that the way a choice is presented

influences what a decision-maker chooses. Similarly, the way that an explanation is presented likely

influences how the recipient responds.

There are many different XAI methods that may be used to present an explanation. Different

forms of an explanation (e.g., text-based, visualization techniques, explanations by example, etc.)

may be presented for the same model. In their taxonomy of XAI methods, Arrieta et al. (2020)

make a distinction between “transparent” ML models that are understandable on their own, versus

more complex models that require “post-hoc analysis”. Transparent models include linear/logistic

regression, decision trees, and general additive models, while non-transparent models that require

post-hoc analysis include tree ensembles, support vector machines, and convolutional neural net-

works (CNNs). Importantly, the algorithm described by the explanation need not be the same as the

actual computational system. As discussed in the previous section, many XAI techniques for post-

hoc analysis depend on finding accurate linear approximations of an underlying non-linear model

(Andrews et al. 1995; Montavon et al. 2018), but according to pragmatic theories of explanation

they may still provide good explanations that advance user goals.

Within our framework, understanding the effects of the explanation mode does not mean indi-

vidually testing every possible XAI method. Instead, our objective is to identify and understand

the effects of some generalizable properties of explanations generated using XAI. For example, re-

search on advice-giving has found that people over (vs. under) weight advice in difficult (vs. easy)

tasks (Gino and Moore 2007), so algorithm adoption may depend upon the recipient’s perceived

complexity of the algorithm’s task, as a result of the given explanation. The quality of an explana-

tion can also depend on the explanation having the right level of detail (Putnam 1960). For example,

in a field experiment involving peer grading within an online course, Kizilcec (2016) demonstrated

that some amount of explanation of the grade calculation algorithm increases trust, but too much
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transparency can actually backfire and erode trust. Explanations can also range from more global in

nature by focusing on population-level aspects to more local by emphasizing the particular features

of the target individual. Finally, the explanation could make reference to prior learning/adaptation

by the model or only describe the system at the current moment in time. One reason why people

exhibit algorithm aversion is that they believe that humans (but not machines) can learn through

experience (Highhouse 2008), and so explanations that convey the adaptability of an algorithm may

have an impact on the objectives. In some cases, human users themselves may be able to learn about

how the algorithm works via multiple exposures or trials (Poursabzi-Sangdeh et al. 2018).

In our studies, we use three XAI methods: verbal or text-based explanation (i.e., of feature

relevance), decision tree (which is a transparent model and thus generates its own explanation), and

neural network (which requires post-hoc analysis methods). For the decision tree explanations, two

key generalizable properties that we examine are how consistent the decision tree is with consumer

expectations and the complexity of the decision tree. For the neural network explanation, we use

SHAP values that indicate feature relevance, and compare local and global SHAP values. We

examine how these different explanation modes impact measures of user goals relative to when no

explanation is provided at all.

To reiterate, the framework in Figure 1 is designed to provide a guide to determine the factors

that impact the user goals. The lists of user goals, explanation modes, and other dimensions are

not to meant to be exhaustive, but to provide a starting point that can be customized to a manager’s

specific use case. Additionally, the underlying relationship between the dimensions and the user

goals may be complex. For instance, Wang and Benbasat (2007) propose that different types of

explanation (e.g., how vs. why) may enhance different trusting beliefs (e.g., competence vs. in-

tegrity). This highlights that it will not be the case that a particular explanation will always be the

best for every user goal, and thus it is important to vary and test a sufficient set of dimensions and

user goals for any use case.

Scenario Dimensions

The characteristics of the outcome itself, which we refer to as “scenario dimensions”, might
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moderate the impact of the explanation mode on the objectives. In other words, the very same se-

quence of words might constitute a useful explanation for one set of outcomes, but not another. A

rich literature exists on how the valence, magnitude, and probability of outcomes impacts human

decision-making (Van Dijk and van der Pligt 1997; Wu and Zhou 2009). For example, individuals

exhibit greater sensitivity to losses versus gains (Tversky and Kahneman 1992), asymmetric updat-

ing towards positive vs. negative information (Eil and Rao 2011), information avoidance (Sweeny

et al. 2010), and nonlinear probability weighting (Gonzalez and Wu 1999).

Based on these findings, the ability of an AI explanation to advance people’s goals may depend

on whether the outcome is beneficial vs. harmful, common vs. rare, low vs. high impact, or even

affecting humans vs. non-humans. For example, a good explanation for a negative outcome might

need to focus on local factors that show how the harmed individual could improve future outcomes,

while a good explanation for a positive outcome might need to emphasize global factors about which

groups are most likely to benefit from the AI system.

In our studies, the primary scenario dimension that we vary is whether an individual receives

a positive or negative outcome, for example whether they are approved or rejected for a loan. No-

tably, we find that the outcome has an impact on our measures of the user goals, including how

understandable and ethical individuals judge the algorithm to be. We use our measure of objective

understanding (i.e., accuracy of the free response explanation and counterfactual) to demonstrate

that information processing differs between individuals who receive positive versus negative out-

comes.

User Characteristics

The attributes of the actual recipients of an explanation may also moderate its effectiveness. For

example, researchers have proposed that algorithm aversion may depend on individual characteris-

tics. Shaffer et al. (2013) study how patient perceptions of doctors who use decision aids depend

on individual differences in locus of control and attitude towards statistics. Hoff and Bashir (2015)

distinguish between factors that influence dispositional trust (e.g., culture, age) and situational trust

(e.g., mood, attentional capacity) in automation.
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There will almost certainly be a significant interaction between human dimensions and explana-

tion mode. An explainee with a PhD in computer science could make use of a technically-detailed

explanation of an AI system, while a non-expert would benefit from a more metaphorical explana-

tion. The literature on how consumer knowledge and expertise shapes behavior suggests that experts

value depth over breadth knowledge compared to novices (Alba and Hutchinson 1987). Thus, one

testable hypothesis might be that low (vs. high) knowledge recipients value broader (vs. more

specific) explanations. Importantly, there may be significant opportunities to tailor explanations to

individuals if their expertise levels (and/or other characteristics) are known.

Finally, it is important to consider the role or motivation of the explainee, such as whether they

are directly experiencing the AI-determined outcome vs. acting as an agent. There are documented

discrepancies and similarities in how people make decisions for others vs. themselves, including

less loss aversion when making gambling and social choices for others (Polman 2012), and pro-

jection when making surrogate predictions for others’ end-of-life decisions (Fagerlin et al. 2001).

Thus, some explanations may serve the objectives of a customer but not a manager, and vice versa.

In our studies, we find that when individuals are given the role of the applicant (vs. developer),

they are more satisfied with the algorithmic explanation and believe that the ability to impact the

outcome is higher.

SUMMARY OF STUDIES

In the following studies, we demonstrate two concrete applications of our framework. In Studies

1A and 1B, participants are asked to consider the context of applying for a credit loan. In Study 1A,

we pretested 7 possible features that might factor into a credit loan application decision to ensure

that people find them to be important and generally agree on the directional impact that they should

have on the decision. In addition, we examine whether individuals believe that usage of algorithms

in making these decisions is ethical/unethical. In Study 1B, we present individuals with different

explanations for an algorithm’s decision for approving/rejecting their credit loan application, and

examine their impact on various measures that may be relevant to user goals, including subjective

understanding, satisfaction, and fairness. We find that participants whose hypothetical loan appli-
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cations were approved rated the explanations higher across all user goal measures. We also found

that the decision tree actually decreased understanding relative to no explanation in some cases, and

that including both local and global neural network explanations resulted in the highest subjective

understanding.

To replicate and test these findings further, in Studies 2A, 2B, and 2C, we asked participants to

consider applying for a credit card. In Study 2A, we again pretested the importance and directional-

ity of different features that would determine the outcome. In Study 2B, we developed a method of

measuring objective understanding to determine whether discrepancies in subjective understanding

between participants who received approve/reject outcomes resulted from differences in informa-

tion processing. To explore why the decision tree seemed to decrease understanding in Study 1B, in

Study 2B, we ensured that the decision tree matched expectations and presented participants with

different approve/reject scenarios that went down different “branches” of the tree. In addition, we

also varied whether the user played the role of the applicant or the algorithm developer. Finally,

Study 2C replicated Study 2B with a sample of users from a different online panel.

STUDY 1A: PRETESTING INTUITIONS FOR CREDIT LOAN ALGORITHMS

To construct the stimuli for Studies 1A and 1B, we used the German Credit Data from the UC

Irvine Machine Learning Repository (Dua and Graff 2019). This dataset consists of 1,000 indi-

vidual profiles, each with 20 features and categorized as either “good” or “bad” credit risks. We

selected 7 of the continuous features (see Table 1) to include in these studies (except for “Prop-

erty”, which was coded as categorical). Study 1A serves as a pretest of people’s lay intuitions or

expectations of how these 7 features should impact the probability of a credit loan application being

approved or rejected. In Study 1B, we test how different explanations for algorithms trained on this

data impact subjective perceptions of understanding.

Design and Method

For Study 1A, we recruited 199 participants in the United States on Amazon’s Mechanical Turk

(MTurk) platform. All participants were told to imagine that they were applying for credit loan
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approval to purchase a new car, and that the bank used an algorithm – developed with information

from 1,000 previous applications and the 7 features shown in Table 1 – to determine whether to

approve or reject the loan application. In order to ensure that participants read the information

given in the table, they were asked two multiple questions about the presented information that they

had to respond to correctly before they could continue with the survey.

Table 1: Table of features shown to participants in Studies 1AB.

Feature Name Description

1. Credit duration How long you have to pay off the loan in months

2. Credit amount How much the loan is for in dollars

3. Employment Number of years you have been employed so far (0 if currently unemployed)

4. Installment rate Monthly payments as a percentage of your disposable income

5. Property Do you own real estate, life insurance, a car, etc.

6. Age Age in years

7. Credit existence How many existing loan approvals have you received from this bank in the past

Participants were asked to rate how important they expected each factor to be when the bank’s

algorithm determined whether to approve or reject the loan application on a 7-point Likert scale (i.e.,

1 = “Not Important At All”, 4 = “Somewhat Important”, 7 = “Extremely Important”). Participants

were then asked to indicate whether they expected specific directional changes in each factor (e.g.,

an increase in credit duration) would increase, decrease, or have no effect on the probability of

approval.

Finally, participants were asked to rate on a 7-point Likert scale how ethical they thought it

was for the bank to use a computer algorithm to make this type of credit loan approval decision,

as well as to explain in a few words why they believed it was ethical/unethical. Participants were

also asked to list up to 5 additional factors (i.e., beyond the 7 given in Table 1) that they thought

the bank’s algorithm should take into account. Finally, participants were asked to answer several

demographic questions, including gender, highest degree of education, current employment status,

household income, age, and state of residence.
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Results and Discussion

Figure 2(a) plots the average importance ratings for each of the 7 factors. All factors were rated

significantly above the midpoint of 4. Figure 2(b) plots the percentage of participants who indicated

that they thought a change (i.e., increase) in the factor would increase, decrease, or have no effect

on the probability of approval. We see that there was a “majority” agreement on nearly all factors

except for credit duration and installment rate.

Figure 2: Importance ratings and directional changes reported by participants in Study 1A.

(a) Average importance ratings (b) Distribution of participant responses regarding
how a directional change (i.e., increase) in each fac-
tor would impact the likelihood of loan approval

We also found that most participants rated the bank’s use of a computer algorithm as highly

ethical, significantly above the midpoint of 4 on the 7-point Likert scale (M = 5.24, SD = 1.44,

t(198) = 12.13, p < 0.001). Sample responses from participants are given in Table 2. We see that

those who gave a lower rating mentioned the individuality of applications, while those who gave

a higher rating focused on the algorithm’s ability to be free of emotion and bias. Interestingly,

compared to people with lower education/schooling (e.g., no high school diploma, high school,

bachelor’s degree), those with higher education/schooling gave a higher ethical rating (t(73) = 3.84,

p < 0.001), although there were no other demographic differences.
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Table 2: Sample responses from participants explaining why they believed the use of algorithms in
making bank loan decisions is ethical or unethical, organized by rating.

Rating Sample Responses

1-3 (Not Ethical)

“Applicants should be looked at on a case by case basis”

“Algorithm might make mistakes”

“The thing is that the algorithm is going to approve or disapprove the credit based on
general factors, but each person has its own history so it will be better if a human could
make the decision”

“Taking the time to talk to the individual about their financial situation and letting
them explain certain aspects that affect their credit would help the bank make the best
decision”

4 (Neutral) “Certain things can use an algorithm (calculating how many loans they got in the past,
etc) but there are some factors that should be determined by a human using human
empathy”

5-7 (Ethical)

“Doing the same work that a person would do minus the emotional or trust factors. Not
unethical, just math.”

“The bank works with actuarial type and historical record information. I think that it
is ethical as those metrics do give relatable information.”

“It’s ethical, because it’s not taking things such as race and ethnicity into account, and
it makes decisions fairly objectively, without emotional influence.”

“It is ethical as the algorithm looks at all factors objectively and will not base its deci-
sions on any pre-conceived notions, judgments, or bias.”

In summary, we demonstrate in Study 1A that the 7 features that we identified within the German

Credit Data are rated as sufficiently important by participants in a credit loan application decision.

In Study 1B, we use these 7 features to train ML algorithms to generate the explanations given

to participants for different outcomes. The expected directional impact of different changes to the

factors given by participants in Study 1A will allow us to identify whether any effects of the expla-

nations are driven by how much participants’ expectations match (or don’t match) the algorithm.

Finally, we found that most participants believe that the bank’s use of an algorithm is ethical because

of their perceived objectiveness of an algorithm (i.e., compared to a human).

STUDY 1B: EFFECTS OF DIFFERENT EXPLANATIONS FOR CREDIT LOAN ALGORITHMIC

OUTPUT ON CUSTOMER UNDERSTANDING

The purpose of this study is to demonstrate how our framework can be applied to a common

real-world setting. Specifically, we examine how consumers respond to explanations given for hy-
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pothetical credit loan approval outcomes, based on actual ML models estimated using real data.

As summarized in Figure 3, Study 1B serves as an example of how our framework can be applied

to a real-world context in order to find the best explanation mode to maximize user goals, given

a specific set of scenario dimensions and user characteristics. In the language of our framework,

the explanation mode is explicitly varied in six different ways, the scenario varies by the valence

of the user’s outcome, and the user characteristics are specified so the explainee motivation is that

of an end-user, with existing individual differences measured via questions on demographics. We

measure several user goals, with the main measure of interest being subjective understanding.

Figure 3: Framework applied to a credit loan approval context in Study 1B.

Design and Method

To construct the stimuli, we used the 7 features in the German Credit Data from the Study 1A

pretest (see Table 1) to train a decision tree model and a neural network (NN) model, each to predict

the good/bad (i.e., approve/reject) outcome.3 Recall that in Study 1A, all 7 features were rated to

be significantly improtant (i.e., above the midpoint on a Likert scale) in a loan application decision.

However, there was disagreement on the directional impact of credit duration and installment rate.

We recruited 1,205 paid participants in the United States on MTurk. Similar to Study 1A, all

participants were told to imagine that they were applying for credit loan approval to purchase a

new car, and that the bank used an algorithm to determine whether to approve or reject the loan
3See Web Appendix A for estimation methods.
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application. We again included multiple choice questions that had to be answered correctly to

continue with the survey to serve as attention checks.

Participants were randomly assigned to a condition in a 2 (scenario dimension: loan application

approved vs. rejected)× 6 (explanation mode: none, verbal, decision tree, NN global, NN local, NN

global and local) between-subjects design. From the German Credit data, we selected two existing

profiles, one good and one bad, for participants in the approve and reject conditions, respectively.

The information was displayed in a column entitled “Your Data” added to Table 1, with participants

told to imagine that they had entered these data into their loan application. Specifically, participants

across all conditions were told that the loan was for $2800, they had been employed for 2 years,

the installment rate would be 3%, they owned life insurance, they were 40 years old, and they had

1 existing loan approval from the bank. Participants in the approve condition were told that their

credit duration was 6 months, while participants in the reject condition were told that their credit

duration was 36 months. Thus, to minimize the effects driven by differences in the feature values,

while maintaining the validity of using models trained on real data, we selected profiles that only

differed by the credit duration feature (i.e., 6 months vs. 36 months).

In the no explanation condition, participants were told their approve/reject outcome with no

additional information. In the verbal condition, participants were given a list of the three most

important features (employment, credit duration, installment rate). In the decision tree condition,

participants were shown a visual representation of the decision tree and told that the algorithm

starts at the top of the tree and follows the yes/no questions downwards (see Figure 4). In the NN

global condition, participants were told that the decisions were determined using a sophisticated

neural network algorithm and shown a plot of SHAP global average values representing the average

importance of each feature across customers (see Figure 5). In the NN local condition, they were

instead shown the SHAP local values representing how the features impact chances of approval in

their specific case and others with similar data features (see Figure 6). Participants in the NN global

and local condition were shown both SHAP global and local values.4

4See Web Appendix B for description of XAI methods.
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Figure 4: Illustration of decision tree model.

Figure 5: SHAP global average values.

Figure 6: SHAP local values for approve vs. reject conditions, with green and red bars indicating
positive and negative impact on approval, respectively.

(a) Approve Condition (b) Reject Condition
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After viewing the explanation and answering several attention and comprehension check ques-

tions, participants were asked to rate, on 7-point Likert scales, their understanding of the algorithm

explanation, as well as perceived intuitiveness, fairness, satisfaction, and ability to impact the out-

come. These responses serve as our measure of the key objectives for a firm implementing this

algorithm. We also asked participants how complex they perceived the algorithm to be, and their

familiarity with loan approval systems. Finally, participants responded to a series of demographic

questions.5

Results and Managerial Implications

Table 3 reports the correlations between the user goal measures, and we see that all of them

are significantly positively correlated. Thus, we expect the effects of the explanation modes and

scenarios to be directionally similar for all measures.

Table 3: Correlations between all user goal measures.

For each user goal, we conducted two-way ANOVAs with the scenario and explanation modes,

and found significant main effects and interactions for nearly all variables.6 To illustrate, in Fig-

ure 7, we compare the ratings for each objective variable between approved vs. reject conditions.

In Table 4, we summarize the results from t-tests of the user goal ratings for each of the explana-

tion modes (compared to no explanation). We highlight three key findings, along with managerial

implications and directions for future research.
5See Web Appendix C for study instructions.
6See Web Appendix D for detailed statistical test results.
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First, as shown in Figure 7, participants in the approve condition rate the explanation higher

across all user goal measures. With positive outcomes, it is possible that recipients simply do not

care about an explanation, so firms may want to focus on improving explanations for negative out-

comes. Or perhaps negative outcomes decrease individuals’ ability to process information, which

would explain the lower ratings for understanding and intuitiveness in the reject condition and would

be consistent with prior findings that people tend to focus on positive information and avoid nega-

tive information (Eil and Rao 2011; Sweeny et al. 2010). In general, perceived understanding may

also reflect the recipient’s affective response to good vs. bad outcomes. More involved studies with

process measures (e.g., eye-tracking, clickstream) may shed light on how valence changes informa-

tion processing and attention. In Study 2B, we directly test for comprehension and understanding

(rather than simply “subjective” or “perceived” understanding) by having participants generate ex-

planations for the decisions, as well as counterfactuals, which can be coded for accuracy.

Figure 7: Average explanation ratings for approve vs. reject conditions in Study 1B.

Second, as shown in Table 4(a), in the approve condition we observe a negative effect of the

decision tree explanation for many of the objective variables. This result is surprising because in-

tuition suggests that any explanation should improve (or at least not decrease) understanding com-

pared to no explanation at all. In fact, shallow decision trees (like ours) are commonly used within
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XAI, and are typically considered useful and intuitive by researchers and practitioners alike. One

explanation for the negative effect is that consumers may expect a very complex algorithm for an

important decision such as a bank loan, and the visualization of the decision tree may give the

impression of an overly simplistic system. This is further supported by the positive effects of the

NN global explanation, in which the algorithm was explicitly described as complex. Thus, when

designing explanations, it may be important to match the explanation of the algorithm’s complexity

to people’s expectations. This finding also highlights that, although more information should in-

crease “true” understanding, in some cases it might decrease perceived understanding, which may

sometimes matter more to managers. Thus, in Study 2B, we measure both subjective and objective

understanding, and also vary the complexity of the decision tree.

Table 4: Summary of significant effects (p < 0.05) in Study 1B of different explanation modes (rel-
ative to no explanation), separated by whether participants were in the approve or reject condition.

(a) Approve Condition

Explanation Mode Understand Intuitive Fair Satisfied Impact

Verbal

Decision Tree – – – – +

NN global + + +

NN local

NN local + global

(b) Reject Condition

Explanation Mode Understand Intuitive Fair Satisfied Impact

Verbal + +

Decision Tree +

NN global + +

NN local + +

NN local + global + + + + +

An alternative explanation is that the structure of the tree did not match participants’ expecta-

tions. Specifically, as shown in Figure 2(b), participants in Study 1A were somewhat split about
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whether higher credit duration should have a positive or negative effect, while in the actual esti-

mated algorithm shown to participants in Study 1B (see Figure 4), lower credit duration is better,

as determined by an algorithm estimated on real data. In addition, participants in Study 1A be-

lieved that higher age would be better, while it was better for age to be lower in the decision tree

used in Study 1B. In Study 2B, we control for these effects by using only non-ambiguous features

and constructing a decision tree that matches participants’ expectations (as pretested in Study 2A).

We also ensure that our results are robust across different applicant profiles that go down different

“branches” of the tree.

Third, we see in Table 4(b) that there is an interaction in the reject condition between the effects

of the NN global and NN local explanation modes. In particular, presenting each on their own does

not improve intuitiveness and fairness ratings, but presenting both results in significant improve-

ments. These results are consistent with the participant free responses from Study 1A for why they

think that using algorithms to determine credit loan application decisions is ethical or unethical

(see Table 2). Specifically, participants who thought algorithms were unethical mentioned individ-

ual histories, which would be addressed with local information, while those who thought algorithms

were ethical mentioned fairness and objectiveness, which would be addressed with global informa-

tion. In addition, only the NN global condition improved the outcome measures among participants

in the approve condition, suggesting that they prefer information about the average user. Further

exploration into how people process information about themselves (i.e., local information) versus

the average user (i.e., global information) in the context of XAI is an important area for future work,

especially as AI continues to be used both in small- and large-scale applications.

In the following set of studies, we replicate our findings from Studies 1A and 1B using a credit

card application setting. In Study 2A, we pretest people’s lay intuitions about an algorithm used for

approving/rejecting credit card applications. In Studies 2B and 2C, we again test the effects of the

approve/reject outcome and explanation mode on subjective understanding. In addition, we vary

decision tree complexity and the participant’s perceived role in the application process, as well as

develop a method for measuring objective understanding.
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STUDY 2A: PRETESTING INTUITIONS FOR CREDIT CARD APPLICATION ALGORITHMS

The purpose of Study 2A was to determine the appropriate stimuli for Studies 2A and 2B, in

which we measure subjective and objective understanding of different explanations for credit card

application decisions. We first determined 11 factors or pieces of information that a bank might

ask for in a credit card application. 6 of the factors (credit score, delinquencies, hard inquiries,

credit usage rate, income, and credit history length) were listed to be among the most important

in determining credit card approval in an article posted by Credit Karma, one of the largest online

credit and financial management platforms. In addition, we included 5 demographic factors (years

employed, years of education, gender, age, and marital status). In Study 2A, we asked participants

to indicate the importance and directional impact they expected each factor to have regarding credit

card applications decisions. This allows us to ensure that the algorithmic explanations and outcomes

presented in Studies 2B and 2C are consistent with general consumer expectations.

Design and Method

We recruited 200 participants in the United States on MTurk. All participants were told to

imagine that they were applying for a credit card, and that the bank used an algorithm to determine

whether to approve or reject their credit card application. They were then told that the algorithm was

developed with information from 10,000 previous applications and used the 11 features in Table 5

to make a decision. In order to ensure that participants read the information given in the table,

they were asked three multiple questions about the presented information and had to answer them

correctly before proceeding further with the survey.

Similar to Study 1A, participants were asked to rate how important they expected each factor to

be when the bank’s algorithm determined whether to approve or reject the credit card application

on a 7-point Likert scale and to indicate whether a specific change in each factor would increase,

decrease, or have no effect on the probability of approval.

Finally, participants were again asked to rate how ethical they thought it was for the bank to use

a computer algorithm and to explain why, to list up to 5 additional factors that should be used in

the algorithm, and to answer a few demographic questions.
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Table 5: Table of features shown to participants in Studies 2ABC.

Feature Name Description

1. Credit score Number ranging from 300-850 that depicts credit-
worthiness, based on credit history (open accounts,
total levels of debt, repayment history)

2. Delinquencies Number of credit accounts that are currently past due

3. Hard inquiries Number of years you have been employed so far (0 if
currently unemployed)

4. Credit card utilization rate Percentage of your available credit that you are using
(between 0% and 100%)

5. Income Year income in dollars

6. Credit history length Number of years you have had and made monthly
payments on existing credit cards

7. Employment Number of years that you have worked for your cur-
rent employer (0 if currently unemployed)

8. Education Number of years of education

9. Gender Male or female

10. Age Age in years

11. Marital status Married or single

Results and Discussion

Figure 8 plots the average importance ratings and directionality for the 11 features. We see that

education, gender, age, and marital status are rated as relatively unimportant, and thus we exclude

them from Studies 2B and 2C. We also exclude the credit usage rate feature because, although it was

rated high on importance, there was large disagreement on whether an increase in credit usage rate

would have a positive or negative impact. In total, this leaves us 6 features to use in the following

studies: credit score, delinquencies, hard inquiries, income, credit history length, and employment.
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Figure 8: Importance ratings and directional changes reported by participants in Study 2A.

(a) Average importance ratings

(b) Distribution of participant responses regarding how a directional change (i.e., increase) in each
feature would impact credit card approval. The exceptions were gender and marital status, which
were expressed as binary changes (i.e., “if the applicant was female rather than male” and “if the
applicant were married rather than single”, respectively).
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STUDY 2B: EFFECTS OF DIFFERENT EXPLANATIONS FOR CREDIT CARD

ALGORITHMIC OUTPUT

The design of Study 2B allowed us address three key objectives. First, unlike in Study 1B where

we used real data to estimate the algorithms and generate the stimuli, in Study 2B we directly used

the responses from Study 2A to generate algorithmic explanations and outcomes that aligned with

general consumer expectations. Specifically, the decision trees shown to participants in Study 2B

include only features that were deemed to be important by participants in Study 2A, with branchings

that are directionally consistent with their expectations. By controlling for consumer expectations

and also including trees of varying complexity, we can test whether the lack of improvement in un-

derstanding with the decision tree explanation in Study 1B was due to the decision tree not matching

expectations or the decision tree visualization giving participants the feeling that the algorithm was

not complex enough.

Second, we measure objective understanding of algorithmic explanations by developing a method

based on coding information from participants’ free responses. We compare objective understand-

ing to participants’ self-reported subjective understanding to determine whether the measures are

positively correlated, which would indicate that individuals can accurately self-assess their own

understanding. In addition, this would lend some support to the hypothesis that differences in un-

derstanding across different conditions in our study (e.g., positive vs. negative outcomes) are due

to differences in information processing.

Third, unlike in Study 1B where we did not experimentally manipulate the user characteristics,

in Study 2B, participants are told to either imagine themselves to be the credit card applicant or

the developer of the algorithm. This allows us to test for whether or not being the recipient of the

outcome moderates the effects of the explanation mode on understanding.

In summary, as illustrated in Figure 9, we vary the explanation mode by comparing no expla-

nation, a simple decision tree, and a complex decision tree. The user goals that we measure are

understanding (both subjective and objective), satisfaction, and perceived ability to impact the out-

come. We then test whether the effects of the explanation mode on user goals are moderated by
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whether participants were approved vs. rejected or in the left vs. right branches (i.e., scenario di-

mensions), as well as by whether participants played the role of the applicant or developer (i.e., user

characteristics).

Figure 9: Framework for dimensions of explanation for Study 2B.

Design and Method

We recruited 2,411 paid participants in the United States on MTurk. Participants were told

about a bank that uses a computer algorithm to determine credit card application decisions with

the information in Table 5. Note that participants in Study 2B were only shown a table with the

6 important/non-ambiguous features determined in Study 2A: credit score, delinquencies, hard in-

quiries, income, credit history length, and employment.

Participants were randomly assigned to a condition in a 2 (scenario: credit card application

approved vs. rejected) × 3 (explanation mode: none, simple decision tree, complex decision tree)

× 2 (explainee motivation: applicant vs. developer) × 2 (decision tree branching: right vs. left)

between-subjects design.

Participants in the applicant condition were asked to imagine that they themselves were apply-

ing for a new credit card at a national bank. Their hypothetical information was presented in a

“Your Data” column in a modified version of Table 5 that contained only the 6 features of interest.

To reinforce their understanding of their role, participants were asked to enter this information into
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appropriate boxes on the screen. Participants in the developer condition were told to imagine that

they were working as a software developer at a national bank, and that their job was to develop a

computer algorithm to help the bank determine whether to approve or reject credit card applications

based on the 6 main features, and then told to consider a hypothetical customer who had submit-

ted their application with their information presented in an “Applicant Data” column. We again

included multiple choice questions that had to be answered correctly to continue with the survey to

serve as attention checks.

Participants were told that the credit card application was either approved or rejected. They were

then given either no explanation, shown a simple decision tree (see Figure 10), or shown a complex

decision tree (see Figure 11). We used the importance and directionality ratings from participants

in Study 2A to generate decision trees that were consistent with their expectations.7 For example,

in Study 2A, the delinquencies feature was rated as relatively important, with more delinquencies

expected to decrease the chances of approval. Consistent with this, delinquencies determine reject

vs. approve in the bottom-right node of the simple decision tree, and reject vs. continue to the next

branch in the complex decision tree.

Figure 10: Simple decision tree shown to participants in Study 2B.

7The average importance and directionality ratings of the 6 features were used as a guide to determine the mag-
nitude and sign of the coefficients within a logistic regression to simulate data. This simulated data was then used
to estimate decision trees of varying complexity/depth, with minor adjustments made to ensure minimal differences
between scenarios.
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Figure 11: Complex decision tree shown to participants in Study 2B.

Table 6: Different scenarios shown to participants in Study 2B.

Feature Name Positive
(Right Branch)

Negative
(Right Branch)

Positive
(Left Branch)

Negative
(Left Branch)

1. Credit score 650 650 580 580

2. Delinquencies None Two None None

3. Hard inquiries None None None Two

4. Income $75,000 $75,000 $75,000 $75,000

5. Credit history length 4 years 4 years 4 years 4 years

6. Employment 3 years 3 years 3 years 3 years

In order to ensure the robustness of our main results to specific scenario information, we selected

four hypothetical profiles, with two resulting in an approval outcome and two resulting in a reject

outcome using either the simple or complex decision tree, as shown in Table 6. For the two “right

branch” scenarios, the credit score is 650, and for the two “left branch” scenarios the credit score

is 580. Within the positive and negative scenarios that go down the right branch of the decision
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trees, the data only differs by the delinquencies feature. Within the positive and negative scenarios

that go down the left branch, the data only differs by the hard inquiries feature. Thus, we generally

control for feature values by comparing positive vs. negative conditions within branches, but also

test for robustness with scenarios that go down different branches.

Participants were then asked to describe in their own words why the application was approved

or rejected, and also to describe one or more factors in the profile that, if changed, would result

in the opposite outcome for the credit card application (i.e., an alternative profile or counterfac-

tual). By coding these responses for accuracy, we can obtain a measure of participants’ objective

understanding.

Participants were also asked to rate on 7-point Likert scales their (subjective) understanding of

the algorithm’s explanation, how sophisticated/complex they thought the algorithm was, how sat-

isfied they were with the decision, and the perceived ability of an applicant to impact their chances

of obtaining the credit card.

We also asked participants how ethical they think it is for a bank to use a computer algorithm

to make this type of credit card approval decision on a 7-point Likert scale, and also to explain why

they thought it was ethical or unethical in a free response question. Finally, they answered a few

demographic questions.

Results and Discussion

First, we replicate our findings from Study 1B that participants in the approve condition rate

the explanation higher across all objectives, as shown in Figure 12, which compares the average

ratings for positive/negative outcomes for the left/right branches. Thus, when faced with a positive

outcome participants across both applicant and developer roles rate the algorithmic explanation

higher on subjective understanding, satisfaction, and ability to impact the outcome. It is surprising

that the positive/negative outcome impacts the user goal measures for participants in the developer

role, which can be interpreted as our manipulation not being strong enough or individuals finding

it difficult not to be impacted by the reject/accept language, even when it is not meant to represent

their own outcome.
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Figure 12: Average explanation ratings for approve vs. reject conditions in Study 2B.

(a) Right Branch (b) Left Branch

Second, as shown in Table 7, the simple and complex tree explanations (relative to no expla-

nation) significantly improve self-reported subjective understanding and satisfaction in nearly all

conditions. Thus, we mitigate the negative effects of the decision tree explanation that we found

among participants in Study 1B who were in the approve condition.

Table 7: Summary of significant effects (p < 0.05) of different explanation modes (relative to no
explanation), separated by whether participants were in the approve or reject condition in Study 2B.

(a) Approve, Right Branch

Explanation Mode Understanding Satisfaction Impact

Simple Tree + +

Complex Tree

(b) Reject, Right Branch

Explanation Mode Understanding Satisfaction Impact

Simple Tree + +

Complex Tree + +

(c) Approve, Left Branch

Explanation Mode Understanding Satisfaction Impact

Simple Tree + +

Complex Tree + +

(d) Reject, Left Branch

Explanation Mode Understanding Satisfaction Impact

Simple Tree + +

Complex Tree + +
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However, it is important to note that there is no significant difference in the user goal measures

between the simple tree and complex tree explanations, except for the positive right branch, where

the complex tree did not improve understanding and satisfaction significantly. Overall, while we

have shown that decision trees can improve the user goal measures, there are not significant gains

to using more complex trees. In fact, in some cases, such as the approve, right branch condition in

our study, the simple tree actually results in higher understanding and satisfaction than the complex

tree.

In Figure 13 we plot the average complexity ratings for the no explanation, simple tree, and

complex tree conditions. We see that the simple tree falls significantly below people’s expectations

with no explanation, while the complex tree is roughly equal in complexity. Thus, we find evidence

against the explanation that individuals do not like an algorithm that seems too simple, and instead

conclude that the negative effect of the decision tree in Study 1B was more likely due to the tree

branchings not matching consumer expectations.

Figure 13: Average complexity ratings for different explanation modes in Study 2B.

To further explore the underlying mechanism of positive outcome participants reporting higher

subjective understanding compared to negative outcome participants, we measured objective un-

derstanding using the answers to the free response questions. Recall that all participants in Study

2B were asked to explain in their own words why the application was accepted/rejected, as well as
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to generate a counterfactual or alternative profile that would result in the opposite outcome. Table 8

gives several sample responses from participants who were in the simple tree and applicant condi-

tions. We see that correct responses may vary depending on whether the scenario went down the

right versus left branches of the decision tree.

Table 8: Sample explanation and counterfactual responses from participants across four outcome
and branch conditions in Study 2A (simple tree, applicant role condition).

Condition Explanation Counterfactual

Approved,
Right Branch

“The customer had a credit score over of
over 618. Since their length of employment
was less than 4 years, their delinquencies
(0) was also checked. Thus the customer
was approved.” (high score)

“Credit score of 600 with no employment
and many delinquencies.” (high score)

“I was approved because I have 0 delin-
quencies” (low score)

“If they would have had one or more hard
inquiries or any delinquncies, they would
have failed.” (low score)

Rejected,
Right Branch

“With a credit score of 650, the algorithm
next examined the length of employment.
Because that value was 3 years, it checked
delinquencies. Because there had been two
(the “one or more” branch), the applicant
was rejected.” (high score)

“1st option: Since this customer meets the
62K or more income requirement, all she
would need to do is wait until her hard in-
quiries fall off. 2nd option: If she improves
her credit score beyond 618 and stays with
her employer for one more year she would
be approved.” (high score)

“Income Is Too Low. The income required
for a credit card varies by credit card issuer”
(low score)

“The profile would change if the income
was higher” (low score)

Approved,
Left Branch

“The customer has a credit score below the
threshold, however their income and lack
of hard inquiries means they are approved”
(high score)

“The person was approved because of em-
ployment years” low score)

“My application would have been rejected
based on my relatively low credit score if
wither my income was below the threshold
of 62000 or if over that I had one or more
hard inquiries on my credit” (high score)

“If they had been late in their payments, re-
sulting in delinquencies, they would be re-
jected” (low score)

Rejected, Left
Branch

“I was rejected because my credit score was
less than 618, my yearly income was 75000
but I have had 2 hard inquiries which results
in rejection” (high score)

“I was probably rejected for not making
enough, too many inquiries and delinquen-
cies.” (low score)

“If the customer had the same credit score
of 580 with a yearly income of $75,000 and
no hard inquiries, the customer would be
approved rather than rejected.” (high score)

“If I had no delinquencies & had worked
for my 4 or more years for my current em-
ployer.” (low score)
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For each of the 6 features, participant’s responses received one point for correctly mentioning a

feature that was directly relevant to the decision or correctly omitting a feature that was not directly

relevant. Which features were considered relevant or irrelevant depended on the tree and branch.

For example, a participant in the simple tree, right branch condition would receive points for men-

tioning credit score, employment, and delinquencies, as well as points for not mentioning income,

credit history length, and hard inquiries. Thus, we assigned a score out of 6 points for each par-

ticipant’s explanation and counterfactual responses. Note that we do not compute a feature score

for participants in the no explanation condition. As illustrated in the examples in Table 8, some

responses may have been correct but scored lower because they didn’t discuss as many features.

We find a significant positive correlation between the self-reported subjective understanding

rating and the feature score of the explanation response (r = 0.20, t(1603) = 8.34, p < 0.001), as

well as a positive correlation between subjective understanding and the feature score of the coun-

terfactual response (r = 0.12, t(1603) = 4.68, p < 0.001).8 This suggests that although our

measures of subjective and objective understanding are not exactly equivalent, they are related and

participants are generally able to accurately evaluate their own understanding.

Figure 14 plots comparisons of the feature scores across the different scenarios. In panels A and

B we compare the feature scores for the explanation and counterfactual responses among partici-

pants who saw the simple decision tree explanation. We see that for both the right and left branch

scenarios, participants in the approve condition mentioned/omitted more features correctly in their

response explanations compared to participants in the reject condition. In other words, it appears

that participants in the approve condition considered more of the information and features overall.

In contrast, there was no difference in feature scores for the counterfactual between the approve and

reject conditions, indicating that participants in both conditions were able to consider roughly the

same number of features that could be changed to generate the opposite outcome.

The results for the complex tree are less straightforward. For the right branch (panel C), there

was no difference in the feature score for the explanation between conditions, but people in the reject
8We obtain similar results using different coding systems, such as excluding penalties for omitted features, different

weightings, etc.
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condition mentioned more correct features in the counterfactual response. For the left branch (panel

D), participants in the approve condition mentioned more correct features for both the explanation

and the counterfactual responses. These results indicate that as the complexity of a decision tree

grows, it becomes more difficult to determine an individual’s understanding of how the decisions

are made since the algorithm’s decisions can be attributed to many more features, and there are

many more possible counterfactual scenarios.

Figure 14: Feature scores for explanation and counterfactual responses across different conditions
in Study 2B.

Finally, we also examine whether the role of the user impacted any of the user goals. Overall, we

find that developers were more satisfied compared to applicants with the algorithmic explanations
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(t(2205.7) = 2.37, p = 0.018), while applicants thought that the ability to impact the outcome was

higher (t(2174.3) = 2.54, p = 0.011). However, there were no significant interactions between

the user role and the other manipulations. Thus, it appears in our context that the strong effects of

positive vs. negative outcomes and explanation modes apply to both applicants and developers. In

future work, the distinction between applicant and developer roles may be heightened by surveying

actual developers or by incentivizing participants based on prediction accuracy of the algorithm,

which is more closely aligned with typical developer goals.

In summary, in Study 2B, by carefully constructing decision trees with branchings that match

consumer expectations, we demonstrate that decision trees can help increase feelings of understand-

ing and satisfaction relative to no explanation. In addition, we analyze free responses from partici-

pants explaining how the decision was made and possible counterfactual scenarios, and demonstrate

that the objective “correctness” of the explanations are positively correlated with subjective feelings

of understanding. We replicate our finding from Study 1B that positive outcomes lead to greater

subjective understanding, and find evidence that this may be related to individuals being able to

mention more features correctly in the approve condition. One limitation is that with more com-

plex trees, it becomes much more difficult for individuals to attribute decisions to different features

and more difficult for researchers to determine objective understanding (i.e., accuracy of participant

responses). Finally, we only found small differences in the user goal measures between applicant

and developer conditions, with no interactions with other conditions. To fully understand these

differences, it may be necessary to use a stronger manipulation or incentivize different user goals.

STUDY 2C: REPLICATION WITH QUALTRICS PANEL

The purpose of Study 2C was to replicate our findings from Study 2B with a different sample

of participants. We recruited 2,230 paid participants in the United States using the Qualtrics online

panel. The design of Study 2B was identical to Study 2C, except for the demographic questions

being placed at the beginning of the survey rather than at the end in order to ensure a sample

with demographics roughly representative of the US population. In addition, Qualtrics manually

screened out participants who completed the survey too quickly or gave nonsense answers for the
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free response questions. Again, participants were randomly assigned to a condition in a 2 (scenario:

credit card application approved vs. rejected) × 3 (explanation mode: none, simple decision tree,

complex decision tree) × 2 (explainee motivation: applicant vs. developer) × 2 (decision tree

branching: right vs. left) between-subjects design.

As shown in Figure 15, we replicate our findings from Studies 1B and 2B and find that those in

the approve condition tend to rate the user outcome measures higher (i.e., subjective understanding,

satisfaction, and ability to impact outcome). To measure objective understanding, we again code

each explanation and counterfactual response by assigning them feature scores based on whether

each of the 6 features was correctly mentioned or omitted. We again find a significant positive corre-

lation between the subjective understanding rating and the feature score of the explanation response

(r = 0.24, t(1471) = 9.49, p < 0.001), as well as the feature score of the counterfactual response

(r = 0.13, t(1471) = 5.18, p < 0.001). Thus, our measures of subjective and objective understand-

ing are roughly consistent and participants are able to self-assess their depth of comprehension of

the algorithm.

Figure 15: Average explanation ratings for approve vs. reject conditions in Study 2C.

(a) Right Branch (b) Left Branch

Overall, the MTurk participants in Study 2B gave higher ratings of subjective understanding

(M = 6.03, SD = 1.22) compared to the Qualtrics participants in Study 2C (M = 5.76, SD =

1.51, Welch’s t(4288.4) = 6.55, p < 0.001), with similar differences for satisfaction and ability
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to impact the outcome. Consistent with this, MTurk participants exhibited higher feature scores

for their explanation responses (M = 3.81, SD = 1.18) compared to the Qualtrics participants

(M = 3.64, SD = 1.17, Welch’s t(3057.7) = 4.15, p < 0.001). MTurk participants also exhibited

higher feature scores for their counterfactual responses (M = 3.30, SD = 0.92) compared to the

Qualtrics participants (M = 3.19, SD = 0.95, Welch’s t(3031.6) = 4.15, p < 0.001). However,

besides these differences, the remaining results were largely the same between the two samples.

In Table 9, we see that the simple and complex tree explanations again significantly improve

subjective understanding and satisfaction. Again we find that the degree to which the decision trees

improve user outcome measures depends on the scenario (i.e., approve vs. reject, right vs. left

branch), and that more complex trees are not necessarily better than simple trees.

Table 9: Summary of significant effects (p < 0.05) of different explanation modes (relative to no
explanation), separated by whether participants were in the approve or reject condition in Study 2C.

(a) Approve, Right Branch

Explanation Mode Understanding Satisfaction Impact

Simple Tree + +

Complex Tree

(b) Reject, Right Branch

Explanation Mode Understanding Satisfaction Impact

Simple Tree +

Complex Tree + +

(c) Approve, Left Branch

Explanation Mode Understanding Satisfaction Impact

Simple Tree + +

Complex Tree +

(d) Reject, Left Branch

Explanation Mode Understanding Satisfaction Impact

Simple Tree + +

Complex Tree + +

Finally, Figure 16 plots the feature scores for the simple and complex trees across the different

scenario conditions. The results closely replicate our findings from Study 2B (see Figure 14). For

the simple tree (panels A and B), approved participants have higher feature scores for the expla-

nation response, indicating that they are able to consider more information compared to rejected
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participants. For the counterfactual response, approved and rejected participated consider roughly

the same amount of information. For the complex tree (panels C and D), participants in the reject

condition score higher for the right branch, while participants in the approve condition score higher

for the left branch. In other words, objective understanding becomes more highly dependent on the

specific branchings as decision trees become more complex.

Figure 16: Feature scores for explanation and counterfactual responses across different conditions
in Study 2C.

POTENTIAL IMPROVEMENTS TO USER OUTCOMES

As demonstrated in the previous studies, different explanations maximize different user goals

depending on the scenario dimensions and human characteristics. For example, in Study 1B, we find

that for subjective understanding the NN global explanation works best for individuals whose credit
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loans were approved, while the NN global and local explanation worked best for individuals whose

credit loans were rejected. In Studies 2B and 2C, we found that whether the simple or complex

decision tree worked best depended on whether the credit card application was approved/rejected

and whether the customer profile went down the left/right branch of the tree.

Depending on the availability of prior customer data, there is an opportunity for firms to cus-

tomize explanations to different users to maximize their goals. To illustrate the potential improve-

ment, within the different study conditions, we calculated what the average user goal measure would

have been if they had seen the “best” explanation for their specific scenario condition. Figure 17

plots the comparison between the observed and “optimized” user goal measures.

Figure 17: Comparison of observed and optimized user goal ratings.

(a) Study 1B

(b) Study 2B (c) Study 2C
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The best explanation was determined by looking at which explanation resulted in the highest

average rating for a particular user goal measure among participants within the scenario condition.

For example, in Study 1B, among participants in the approve condition, the NN global explanation

was rated highest on average compared to the other explanations in terms of subjective understand-

ing, and so to compute an optimized understanding rating, we set the understanding rating of all

participants in the approve condition to the average within the NN global condition. In contrast,

among participants in the reject condition, the NN global and local explanation was the best, and so

we set the optimized understanding rating for the reject condition participants to the average within

the NN global and local condition. We repeat this process for all of the user goal measures and find

that they result in a 6-9% improvement in the average values, as shown in Figure 17(a).

For Studies 2B and 2C, we computed the best explanation within each accept/reject and right/left

branch scenarios, and also separately for the applicant/developer conditions. For example, for par-

ticipants in the approve, right branch, applicant condition, the simple decision tree resulted in the

highest subjective understanding rating. In contrast, the complex decision tree had the highest rating

among participants in the corresponding reject condition. Additionally, the best explanation mode

may differ depending on the user goal of interest. For example, although the complex tree was

best among participants in the reject, right branch, applicant condition in terms of subjective un-

derstanding, the simple tree was actually rated higher in terms of the perceived ability to impact the

outcome. As shown in Figure 17(b)-(c), this optimization process results in a 3-5% improvement

in the various user goal measures.

GENERAL DISCUSSION

In summary, we present a framework for testing the impact of different dimensions of an ex-

planation given to an end-user that is guided and justified by pragmatic theories of explanation. As

shown in Figure 1, the explanation mode may have an impact on user goals, with scenario dimen-

sions and user characteristics being potential moderators. Our studies offer an initial test among

real human participants of how perceptions of understanding, intuitiveness, and fairness may be

impacted by the dimensions of an explanation, and also demonstrate how the framework can be
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applied to specific settings. Our findings include both intuitive and counter-intuitive results, and

open up several avenues for further testing. This approach is generalizable and empirical applica-

tions of our framework can inform researchers on the factors to consider in XAI development, and

managers on tailoring explanations for customers that maximize objectives such as user trust and

adoption.

Although the primary user goals of interest in our studies fall under the epistemic category (i.e.,

subjective and objective understanding), we find that other important user goals such as satisfaction

and perceived fairness are all highly positively correlated with subjective feelings of understanding.

This suggests that by elucidating the inner workings of algorithmic decision making to consumers,

firms can potentially foster trust and adoption among users. In addition, an important area of fu-

ture research lies in whether different explanation modes may enable individuals to make better

decisions, for example, by combining their understanding of the algorithm and their own judgment.

One consistent finding across both the credit loan and credit card studies is that positive vs.

negative outcomes seem to impact the user goal ratings. We find some evidence that the higher

understanding among participants in the approve conditions may be due to the greater ease with

which they may generate reasons for why the loan was approved, compared to those in the reject

condition. In addition, we find that user outcomes are also sensitive to other profile characteristics,

such as which branch of the decision tree the profile lies. Together, our findings indicate that the

scenario dimensions play an important role in determining how to provide good explanations to

users. Another possibility to explore in future research is how scenario dimensions may actually

change the user’s goals. For example, a customer who is rejected for a loan is likely much more

motivated to understand why the decision was made compared to a customer who was approved,

since the rejected customer may take some action in the future to improve their chances of obtaining

a loan.

In this paper, we specifically highlight two XAI methods when varying the explanation mode

within our framework: decision trees and SHAP. As discussed at the beginning, decision trees fall

under transparent models, while more complex models like neural networks need post-hoc analysis
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such as SHAP. Additionally, decision trees may actually be used as a method of post-hoc analysis.

Of course, many post-hoc XAI methods are meant to be approximations, and there has been some

debate about the accuracy/transparency trade off. In our studies, although we did not explicitly vary

accuracy, we did vary the complexity of the decision tree. In most circumstances, a more complex

decision tree might be more accurate (especially if it were used as the post-hoc explanation of a

more sophisticated non-transparent model). However, it is not always the case that a complex tree

results in the highest understanding. Thus, our framework may be used by firms to understand

the right degree of explanation that is accurate enough (i.e., from an ethical perspective), but also

maximizes user goals. In addition, we found that user understanding and satisfaction with the

decision tree explanation were highly dependent on whether the tree branchings matched consumer

expectations (i.e., regarding the importance and directional impact of the various features), as well

as the particular scenario that defined the user’s profile. Thus, there is potential for even more

detailed customization of explanations provided to users that may help maximize their goals.

XAI is a rapidly growing field that will play several crucial roles in the future development of

human-technology interactions. For developers, XAI provides a way to peek inside the black box

of increasingly complex algorithms. For managers and consumers, XAI will be critical in navigat-

ing the challenges of ML/AI in areas such as consumer fairness and privacy. For social science

researchers, XAI provides a rich avenue for understanding the relationship between explanations

and consumer knowledge and decision-making. Our framework for understanding what makes for

a good explanation for AI output and empirical studies within the context of financial decisions will

hopefully encourage additional research at the intersection of XAI and social science.
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Kizilcec, René F (2016). “How much information? Effects of transparency on trust in an algo-
rithmic interface.” In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems 2016 May 7, pp. 2390-2395.

Lage, Isaac, Emily Chen, Jeffrey He, Menaka Narayanan, Been Kim, Sam Gershman, and Finale
Doshi-Velez (2016). “An evaluation of the human-interpretability of explanation.” arXiv preprint
arXiv:1902.00006.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning (2015).” Nature,
521(7553): 436-44.

Lipton Peter (2008). CP Laws, reduction and explanatory pluralism. Being Reduced: New Essays
on Reduction, Explanation, and Causation, pp. 116-125.

Lipton, Zachary C. (2018). “The mythos of model interpretability.” Queue, 16(3): 31-57.

Lombrozo, Tania, and Susan Carey (2006). “Functional explanation and the function of explana-
tion.” Cognition, 99(2): 167-204.

Mantzavinos, Chrysostomos (2016). Explanatory Pluralism, Cambridge University Press.

McCauley, Robert N. (1996). “Explanatory pluralism and the coevolution of theories in science.”
The Churchlands and Their Critics, pp. 17-47.

Miller, Tim (2019). “Explanation in artificial intelligence: Insights from the social sciences.” Arti-
ficial Intelligence, 267: 1-38.
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Web Appendix For
“Good Explanation for Algorithmic Transparency”

Web Appendix A: Machine Learning Algorithms

Decision Tree
Decision trees are a type of nonparametric supervised learning algorithm that can be used for

both classification and regression problems. In our case, we use it for classification (i.e., “Good”
or “Bad” credit risk). Decision trees, along with simple rule-set approaches, are one of the most
human-interpretable or transparent algorithms when the size (i.e., depth) of the tree is not too large.
Briefly described, the tree algorithm splits data feature space into subregions to maximize the purity
of training data labels (i.e., each region contains largely one class). The splitting nodes of the deci-
sion tree are generated based on the principle of largest entropy (a measure of impurity) reduction.
For formal introductions and more details, please see Bishop (2006) and Hastie et al. (2005).

To implement a decision tree with the German Credit Data, we utilize the python package Scikit-
Learn (Pedregosa et al. 2011). Figure A1 shows an example of a decision tree trained on the data.
Each node splits the data into subregions. A complete path from the top root node to the bottom
leaf node corresponds to a rule that is easily understandable to humans.

Figure A1: Illustration of decision tree model

Neural Network
Neural networks are the most advanced black box algorithms in use today. A neural network

algorithm consists of atomic computation units called neurons. A neuron takes a vector of input,
linearly combines it much like linear regression, followed by a nonlinear activation function such
as sigmoid. Output is then sent to the next neuron. A network of neurons like these form a neural
network to learn a nonparametric function given training data (i.e., a dataset with independent
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variables and outcome labels). “Learning” in neural network is casted as an optimization problem
that is solved through stochastic gradient descent and network weights are adjusted according to
Backpropagation algorithm, which is an applied chain rule. There are many different architectures
of neural networks for different types of data ranging from simple tabular data, time series data,
to unstructured image and text data. Neural networks have been shown to excel in all types of
supervised learning problems and are one of the most widely used types of algorithms in the industry
today (LeCun et al. 2015; Goodfellow et al. 2016).

To implement a neural network with the German Credit Data, we utilize Tensorflow (Abadi et
al. 2016), a deep learning framework released by Google. In particular, we use a simple fully-
connected neural net with 2 hidden layers of size 20 using ReLU activation functions and softmax
output layer. For formal introductions and more details, please see Goodfellow et al. (2016).
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Web Appendix B: XAI Methods
We describe the XAI algorithms used to provide explanations/rationales for black box neural

network algorithms. Focusing on our case for explaining algorithmic predictions, one stream in XAI
called “explainable machine learning” is most relevant (Rudin 2019). The definition of explainable
machine learning is given as follows: Given a black box predictor B and a training dataset D =
{X, Y }, the explainable machine learning algorithm takes as an input a black boxB and a dataset
D, and returns a transparent predictor T with requirements that (1) T replicates the predictions
of the black box B with high fidelity, and (2) T offers human-understandable rationale for each
prediction either at the instance-level or model-average level. T may be a shallow tree, small set
of rules, or linear regression with not too many explanatory variables.

To maximize relevance and impact, we selected two of the most widely-used methods in both
industry and academia (e.g., Guidotti et al. 2018; Hall et al. 2017) to construct the stimuli in our
study: LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (SHapley Additive
exPlanations).

LIME (Local Interpretable Model-Agnostic Explanations)
LIME (Ribeiro et al. 2016) leverages simple linear models, found to be generally more under-

standable, to explain any complex black box models. LIME approximates any complex black box
model using a surrogate interpretable linear model (given input and output prediction) and uses this
simpler model to provide explanation for a given data point at the local level. The data for training
the simple explanation model is drawn from the neighborhood of the given instance to be explained
by perturbation. Figure A2 shows an example of a complex nonlinear model discriminant line ap-
proximated by a simple linear model at the local level.

Figure B1: Toy example to present the intuition for LIME. The black-box model’s complex deci-
sion function f (unknown to LIME) is represented by the blue/pink background, which cannot be
approximated well by a linear model. The bold red cross is the instance being explained. LIME
samples instances, gets predictions using f , and weighs them by the proximity to the instance being
explained (represented here by size). The dashed line is the learned explanation that is locally (but
not globally) faithful. Figure is from the original LIME paper.

Intuitively, LIME solves an optimization problem that balances local fidelity and complexity
(i.e., the inverse of interpretability) of the interpretable surrogate model. Mathematically, the ex-
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planation produced by LIME can be expressed as follows:

(1) explanation(x) = arg min
g∈G

L(f, g, πx) + Ω(g)

In Equation (1), x is the instance to be explained, G is the family of all possible explanation
models (e.g., all possible linear regression models), and g is the best one among this family that
minimizes the prediction loss L of g compared to the prediction of the original model f , plus the
model complexity Ω(g). The lower the model complexity Ω(g), the easier it is to understand the
rationale for prediction made by the model g. For example in the context of linear models, Ω(g) may
be the number of coefficients. In the context of decision trees, Ω(g) may be the depth of the tree.
πx defines the proximity of the neighborhood around instance x and how much the loss function
weighs a particular set of data points bootstrapped by perturbing instance x.

SHAP (SHaply Additive exPlanations)
SHAP (Lundberg and Lee 2017) is a general framework that unifies multiple local interpretabil-

ity methods, including LIME. SHAP finds the feature importance of input variables for a given data
point. This approach is based on Shapley Values in game theory, which is a method designed for
fairly distributing the reward among the players in a cooperative game based on their contribution.
In the SHAP context, each attribute in the data are the “players” and the outcome variable Y is the
“reward”. One step of SHAP utilizes LIME for obtaining local feature importance. For obtaining
global feature importance, for each variable, we can average the SHAP feature importance values
over all data points.
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Web Appendix C: Study Instructions
Imagine that you are planning to purchase a new car. In order to do so, you are applying for a

credit loan approval from a regional bank. Suppose that this bank determines whether to approve
or reject a loan application using a computer algorithm. This algorithm uses 7 different “features”
or pieces of information about the customer as the input to make an approve/reject decision. To
develop the algorithm, the bank utilized information from 1000 previous loan applicants.

The following table gives the name and a brief description of each of the 7 features. The last
column of the table indicates where your data would be entered when applying for a loan. Please
take a few moments to scan through the list of features and their descriptions.

Now imagine that you have input your data (for this hypothetical loan application scenario), as
it appears in the table below. Please take a moment to scan through your data inputs.

Now imagine that based on your data, the computer algorithm that the bank uses decides to
approve [reject] your loan application. The algorithm was developed using artificial intelligence
and historical user data from 1000 previous loan applicants.
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No Explanation Condition
No additional information

Verbal Explanation Condition
The three main features that impacted the decision to approve [reject] your loan application

were the following:

• Employment

• Credit duration

• Installment rate

Decision Tree Condition
To help explain how the algorithm worked when making the decision to approve your loan ap-

plication, the bank has provided the following visual of the “decision tree” model that the algorithm
uses. For each loan application, the algorithm first starts at the top of the tree and asks a series of
yes/no questions, and follows the tree all the way down to the bottom to make an approve/reject
decision based on the user’s data.

For example, the first question is about the property feature and asks whether or not you (the
user) owns real estate. If yes, then the algorithm moves to the next question on the left (credit
duration). If no, then the algorithm moves to the next question on the right (employment).

Based on your data, the algorithm followed the following steps:

• Property: Do you own real estate? No (you own life insurance) Employment: Less than or
equal to 4 years? Yes (2 years)

• Credit duration: Less than or equal to 18.5 months? Yes (6 months) [No (36 months)]

• Final Decision: Approve [Reject]
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NN Global Condition
Specifically, the approve/reject decisions are determined using a sophisticated and complex neu-

ral network algorithm. To help explain how the algorithm worked when making the decision to
approve your loan application, the bank has provided the following visual that shows the average
importance of each of the features in the decision to approve/reject a user’s loan application (i.e.,
the absolute value of the Shapley value). In the graph, the larger the blue bar, the more important
the feature is on average across different customers.

NN Local Condition
Specifically, the approve/reject decisions are determined using a sophisticated and complex neu-

ral network algorithm. To help explain how the algorithm worked when making the decision to ap-
prove your loan application, the bank has provided the following visual that shows how the different
features impact the chance of approval for you and other users like yourself with similar data fea-
tures. A red bar indicates that the feature had a negative impact on approval, while a green indicates
that the feature had a positive impact on approval. The length of the bars indicates the magnitude
of impact.

(a) Approve Condition (b) Reject Condition
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NN Global and Local Condition
Specifically, the approve/reject decisions are determined using a sophisticated and complex neu-

ral network algorithm. To help explain how the algorithm worked when making the decision to
approve your loan application, the bank has provided the following visual that shows the average
importance of each of the features in the decision to approve/reject a user’s loan application (i.e.,
the absolute value of the Shapley value). In the graph, the larger the blue bar, the more important
the feature is on average across different customers.

The bank has also has provided the following visual that shows how the different features impact
the chance of approval for you and other users like yourself with similar data features. A red bar
indicates that the feature had a negative impact on approval, while a green indicates that the feature
had a positive impact on approval. The length of the bars indicates the magnitude of impact.

(a) Approve Condition (b) Reject Condition

Dependent variables
We would now like you to answer the following questions about the decision. (Note that in

Qualtrics, participants respond on a scale from 1-7).

• How understandable do you find the above explanation?

• How complex do you perceive the algorithm to be?
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• How intuitive do you perceive the algorithm to be?

• How fair do you find the algorithm to be?

• How satisfied are you with the explanation of the decision?

• How would you rate your ability to improve your chances of obtaining this loan approval?

• How familiar are you with loan approval systems?
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Web Appendix D: Study Analysis and Results

Table D1: Summary of two-way ANOVA analyses for all dependent variables (Study 1B).

Scenario Dimensions Explanation Mode Interaction

Understanding F(1,1193) = 41.80, p < 0.001 F(5,1193) = 7.48, p < 0.001 F(5,1193) = 2.11, p = 0.061

Complexity F(1,1193) = 2.15, p = 0.143 F(5,1193) = 2.15, p = 0.008 F(5,1193) = 2.11, p = 0.061

Intuitiveness F(1,1193) = 18.69, p < 0.001 F(5,1193) = 3.43, p = 0.004 F(5,1193) = 2.31, p = 0.043

Fairness F(1,1193) = 83.30, p < 0.001 F(1,1193) = 5.38, p < 0.001 F(5,1193) = 2.77, p = 0.017

Satisfied F(1,1193) = 177.67, p < 0.001 F(1,1193) = 7.07, p < 0.001 F(5,1193) = 5.39, p < 0.001

Impact F(1,1193) = 78.26, p < 0.001 F(1,1193) = 72.65, p < 0.001 F(5,1193) = 2.32, < 0.001

Familarity F(1,1193) = 0.07. p = 0.796 F(1,1193) = 1.83, p < 0.876 F(5,1193) = 0.36, p = 0.876

Table D2: Summary statistics for objective variables across participants in the approve condition,
along with t-statistics and p-values from t-tests comparing each explanation mode to the no expla-
nation baseline (Study 1B).

Explanation Mode Understanding Intuitiveness Fairness Satisfied Impact

None (Baseline) M=5.39, SD=1.51 M=4.41, SD=1.56 M=5.06, SD=1.25 M=5.20, SD=1.50 M=4.43, SD=1.70

Verbal M=5.76, SD=1.23
t=1.89, p=0.060

M=4.68, SD=1.44
t=1.31, p=0.191

M=4.96, SD=1.31
t=0.55, p=0.583

M=5.25, SD=1.43
t=0.35, p=0.811

M=4.82, SD=1.45
t=1.78, p=0.076

Decision Tree M=4.97, SD=1.50
t=2.00, p=0.046

M=3.88, SD=1.69
t=2.30, p=0.023

M=4.29, SD=1.51
t=3.91, p=0.000

M=4.52, SD=1.61
t=3.10, p=0.002

M=4.17, SD=1.70
t=1.06, p=0.291

Neural Network
(global)

M=5.94, SD=1.43
t=2.76, p=0.006

M=4.79, SD=1.34
t=1.89, p=0.060

M=5.30, SD=1.26
t=1.35, p=0.180

M=5.51, SD=1.26
t=2.213, p=0.035

M=4.99, SD=1.58
t=2.44, p=0.016

Neural Network
(local)

M=5.72, SD=1.43
t=1.54, p=0.124

M=4.50, SD=1.67
t=0.39, 0.697

M=4.94, SD=1.26
t=0.68, p=0.499

M=5.41, SD=1.45
t=1.03, p=0.302

M=4.80, SD=1.56
t=2.05, p=0.042

Neural Network
(global + local)

M=5.65, SD=1.14
t=1.367, p=0.174

M=4.71, SD=1.47
t=1.44, p=0.151

M=4.93, SD=1.41
t=0.69, p=0.493

M=5.37, SD=1.30
t=0.69, p=0.493

M=4.62, SD=1.54
t=0.87, p=0.386
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Table D3: Summary statistics for objective variables across participants in the reject condition,
along with t-statistics and p-values from t-tests comparing each explanation mode to the no expla-
nation baseline (Study 1B).

Explanation Mode Understanding Intuitiveness Fairness Satisfied Impact

None (Baseline) M=4.45, SD=1.94 M=3.89, SD=1.47 M=3.98, SD=1.44 M=3.20, SD=1.71 M=3.61, SD=1.40

Verbal M=5.93, SD=1.80
t=2.23, p=0.028

M=4.00, SD=1.59
t=0.51, p=0.612

M=4.04, SD=1.63
t=0.28, p=0.783

M=3.80, SD=1.89
t=2.35, p=0.020

M=3.73, SD=1.78
t=0.50, p=0.618

Decision Tree M=4.83, SD=1.61
t=1.53, p=0.127

M=4.07, SD=1.59
t=0.828, p=0.409

M=3.86, SD=1.59
t=0.56, p=0.574

M=4.12, SD=1.81
t=3.61, p<0.001

M=3.78, SD=1.83
t=0.72, p=0.472

Neural Network
(global)

M=5.12, SD=1.65
t=2.66, p=0.008

M=4.10, SD=1.52
t=0.99, p=0.325

M=4.14, SD=1.46
t=0.77, p=0.441

M=4.21, SD=1.58
t=4.36, p<0.001

M=3.81, SD=1.66
t=0.83, p=0.354

Neural Network
(local)

M=5.26, SD=1.63
t=3.26, p=0.001

M=4.26, SD=1.80
t=1.62, p=0.107

M=4.30, SD=1.61
t=1.51, p=0.132

M=4.27, SD=1.87
t=4.27, p<0.001

M=3.76, SD=1.82
t=0.66, p=0.509

Neural Network
(global + local)

M=5.33, SD=1.49
t=3.64, p<0.001

M=4.33, SD=1.51
t=2.10, p=0.037

M=4.59, SD=1.63
t=2.79, p=0.006

M=4.32, SD=1.75
t=4.59, p<0.001

M=4.19, SD=1.74
t=2.59, p=0.010

Table D4: Summary of two-way ANOVA analyses for all dependent variables for participants in the
right branch condition (Study 2B). Note that we collapse across applicant/developer conditions.

Scenario Dimensions Explanation Mode Interaction

Understanding F(1,1192) = 13.36, p<0.001 F(2,1192) = 39.64, p<0.001 F(2,1192) = 8.53, p<0.001

Complexity F(1,1192) = 0.72, p = 0.396 F(2,1192) = 16.12, p<0.001 F(2,1192) = 2.60, p = 0.075

Satisfaction F(1,1192) = 33.88, p<0.001 F(2,1192) = 22.61, p<0.001 F(2,1192) = 10.07, p<0.001

Impact F(1,1192) = 59.83, p<0.001 F(2,1192) = 0.98, p = 0.374 F(2,1192) = 0.34, p = 0.710

Ethical F(1,1192) = 9.00, p = 0.003 F(2,1192) = 0.03, p =0.973 F(2,1192) = 3.72, p = 0.025

Table D5: Summary of two-way ANOVA analyses for all dependent variables for participants in
the left branch condition (Study 2B). Note that we collapse across applicant/developer conditions.

Scenario Dimensions Explanation Mode Interaction

Understanding F(1,1207) = 39.99, p < 0.001 F(2,1207) = 48.37, p < 0.001 F(2,1207) = 10.45, p < 0.001

Complexity F(1,1207) = 1.10, p = 0.294 F(2,1207) = 16.13, p < 0.001 F(2,1207) = 0.36, p=0.698

Satisfaction F(1,1207) = 91.98, p < 0.001 F(2,1207) = 27.76, p < 0.001 F(2,1207) = 4.95, p = 0.007

Impact F(1,1207) = 73.07, p < 0.001 F(2,1207) = 0.081, p = 0.922 F(2,1207) = 0.03, p = 0.971

Ethical F(1,1207) = 20.35, p < 0.001 F(2,1207) = 5.79, p = 0.003 F(2,1207) = 6.14, p = 0.002
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Table D6: Summary statistics for objective variables across participants in the
right branch, approve condition, along with t-statistics and p-values from t-tests comparing
each explanation mode to the no explanation baseline (Study 2B).

Explanation Mode Understanding Satisfied Impact

None (Baseline) M=5.98, SD=1.18 M=5.73, SD=1.29 M=5.57, SD=1.31

Simple Tree M=6.43, SD=0.87
t=4.33, p<0.001

M=6.02, SD=1.10
t=2.36, p=0.014

M=5.50, SD=1.39
t=0.52, p=0.604

Complex Tree M=6.16, SD=1.11
t=1.55, p=0.120

M=5.82, SD=1.13
t=0.80, p=0.423

M=5.34, SD=1.42
t=1.68, p=0.094

Table D7: Summary statistics for objective variables across participants in the right branch, reject
condition (Study 2B).

Explanation Mode Understanding Satisfied Impact

None (Baseline) M=5.43, SD=1.50 M=4.80, SD=1.76 M=4.82, SD=1.56

Simple Tree M=6.15, SD=1.20
t=5.30, p<0.001

M=5.69, SD=1.43
t=5.59 p<0.001

M=4.81, SD=1.49
t=0.10 p=0.921

Complex Tree M=6.28, SD=0.97
t=6.77, p<0.001

M=5.73, SD=1.37
t=5.96 p<0.001

M=4.77, SD=1.73
t=0.35, p=0.725

Table D8: Summary statistics for objective variables across participants in the left branch, approve
condition (Study 2B).

Explanation Mode Understanding Satisfied Impact

None (Baseline) M=5.96, SD=1.17 M=5.61, SD=1.33 M=5.35, SD=1.20

Simple Tree M=6.36, SD=0.98
t=3.79, p<0.001

M=5.98, SD=1.10
t=3.07, p=0.002

M=5.40, SD=1.38
t=0.31, p=0.755

Complex Tree M=6.31, SD=0.97
t=3.26, p=0.001

M=5.97, SD=1.10
t=3.07, p=0.003

M=5.41, SD=1.38
t=0.40, p=0.690

Table D9: Summary statistics for objective variables across participants in the left branch, reject
condition (Study 2B).

Explanation Mode Understanding Satisfied Impact

None (Baseline) M=5.10, SD=1.66 M=4.51, SD=1.75 M=4.64, SD=1.58

Simple Tree M=6.12, SD=1.11
t=7.27, p<0.001

M=5.31, SD=1.57
t=4.81, p<0.001

M=4.68, SD=1.64
t=0.26, p=0.795

Complex Tree M=6.13, SD=1.04
t=7.57, p<0.001

M=5.46, SD=1.29
t=6.23, p<0.001

M=4.65, SD=1.70
t=0.06, p=0.956
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Table D10: Summary of two-way ANOVA analyses for all dependent variables for participants in
the right branch condition (Study 2C). Note that we collapse across applicant/developer conditions.

Scenario Dimensions Explanation Mode Interaction

Understanding F(1,1116) = 2.57, p = 0.109 F(2,1116) = 10.04, p < 0.001 F(2,1116) = 8.27, p < 0.001

Complexity F(1,1116) = 1.17, p = 0.279 F(2,1116) = 8.79, p < 0.001 F(2,1116) 2.82, p = 0.060

Satisfaction F(1,1116) = 17.96, p < 0.001 F(2,1116) = 9.36, p < 0.001 F(2,1116) = 7.01, p < 0.001

Impact F(1,1116) = 70.69, p < 0.001 F(2,1116) = 0.37, p=0.689 F(2,1116) = 0.412, p = 0.662

Ethical F(1,1116) = 3.00, p = 0.083 F(2,1116) = 0.22, p = 0.799 F(2,1116) = 0.31, p = 0.737

Table D11: Summary of two-way ANOVA analyses for all dependent variables for participants in
the left branch condition (Study 2C). Note that we collapse across applicant/developer conditions.

Scenario Dimensions Explanation Mode Interaction

Understanding F(1,1102) = 15.52, p < 0.001 F(2,1102) = 17.13, p < 0.001 F(2,1102) = 0.43, p = 0.649

Complexity F(1,1102) = 1.26, p = 0.263 F(2,1102) = 11.72, p < 0.001 F(2,1102) = 1.53, p = 0.217

Satisfaction F(1,1102) = 37.53, p < 0.001 F(2,1102) = 8.72, p < 0.001 F(2,1102) = 0.17, p = 0.846

Impact F(1,1102) = 72.54, p < 0.001 F(2,1102) = 0.08, p = 0.923 F(2,1102) = 2.14, p =0.118

Ethical F(1,1102) = 10.47, p = 0.001 F(2,1102) = 0.128, p = 0.880 F(2,1102) = 0.54, p = 0.582

Table D12: Summary statistics for objective variables across participants in the
right branch, approve condition (Study 2C).

Explanation Mode Understanding Satisfied Impact

None (Baseline) M=5.74, SD=1.48 M=5.51, SD=1.58 M=5.30, SD=1.55

Simple Tree M=6.22, SD=1.30
t=3.40, p<0.001

M=6.04, SD=1.28
t=3.66, p<0.001

M=5.36, SD=1.66
t=0.38, p=0.704

Complex Tree M=5.69, SD=1.55
t=0.35, p=0.724

M=5.62, SD=1.52
t=0.72, p=0.474

M=5.31, SD=1.66
t=0.09, p=0.928

Table D13: Summary statistics for objective variables across participants in the
right branch, reject condition (Study 2C).

Explanation Mode Understanding Satisfied Impact

None (Baseline) M=5.34, SD=1.52 M=5.02, SD=1.58 M=4.39, SD=1.60

Simple Tree M=5.82, SD=1.63
t=2.94, p=0.003

M=5.34, SD=1.75
t=1.88, p=0.062

M=4.43, SD=1.91
t=0.24, p=0.807

Complex Tree M=6.06, SD=1.42
t=4.64, p<0.001

M=5.73, SD=1.44
t=4.54, p<0.001

M=4.59, SD=1.83
t=1.13, p=0.261
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Table D14: Summary statistics for objective variables across participants in the
left branch, approve condition (Study 2C).

Explanation Mode Understanding Satisfied Impact

None (Baseline) M=5.62, SD=1.45 M=5.46, SD=1.49 M=5.32, SD=1.18

Simple Tree M=6.17, SD=1.33
t=3.78, p<0.001

M=5.82, SD=1.42
t=2.41, p=0.016

M=5.18, SD=1.71
t=0.92, p=0.356

Complex Tree M=5.93, SD=1.50
t=1.96, p=0.051

M=5.80, SD=1.40
t=2.23, p=0.026

M=5.39, SD=1.49
t=0.44, p=0.662

Table D15: Summary statistics for objective variables across participants in the left branch, reject
condition (Study 2C).

Explanation Mode Understanding Satisfied Impact

None (Baseline) M=5.74, SD=1.48 M=4.81, SD=1.52 M=4.46, SD=1.57

Simple Tree M=5.87, SD=1.52
t=4.48, p<0.001

M=5.29, SD=1.78
t=2.79, p=0.006

M=4.62, SD=1.93
t=0.88, p=0.379

Complex Tree M=5.63, SD=1.54
t=2.97, p=0.003

M=5.26, SD=1.59
t=2.79, p=0.006

M=4.33, SD=1.72
t=0.73, p=0.463
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